• C++ Programming for Financial Engineering
    Highly recommended by thousands of MFE students. Covers essential C++ topics with applications to financial engineering. Learn more Join!
    Python for Finance with Intro to Data Science
    Gain practical understanding of Python to read, understand, and write professional Python code for your first day on the job. Learn more Join!
    An Intuition-Based Options Primer for FE
    Ideal for entry level positions interviews and graduate studies, specializing in options trading arbitrage and options valuation models. Learn more Join!

Asian option pricing using the ADI method

  • Thread starter Thread starter theza
  • Start date Start date
Joined
8/23/24
Messages
4
Points
1
Hello everyone,

I am currently working on pricing an Asian option using the ADI (Alternating Direction Implicit) method, following the guidelines from this article: https://onlinelibrary.wiley.com/doi/10.1155/2013/605943.


I have been trying for several days to get this right, and despite my efforts, I have not achieved any conclusive results. It seems that I have adhered to the protocol described, including the boundary conditions, and I believe the ADI method is correctly implemented. However, the result I am obtaining is drastically different from what I expected. I have attached the graph I obtained in 3D and the graph I should have obtained for comparison.

Has anyone used this method for pricing options and could offer some guidance or insights?

Python:
def thomas_algorithm(a, b, c, d):
    """
     ax_{i-1} + bx_i + cx_{i+1} = d via l'algorithme de Thomas.
    """
    n = len(d)
    c_prime = np.zeros(n-1)
    d_prime = np.zeros(n)

    c_prime[0] = c[0] / b[0]
    d_prime[0] = d[0] / b[0]

    for i in range(1, n-1):
        denominator = b[i] - a[i] * c_prime[i-1]
        c_prime[i] = c[i] / denominator
        d_prime[i] = (d[i] - a[i] * d_prime[i-1]) / denominator

    d_prime[n-1] = (d[n-1] - a[n-1] * d_prime[n-2]) / (b[n-1] - a[n-1] * c_prime[n-2])

    x = np.zeros(n)
    x[n-1] = d_prime[n-1]

    for i in range(n-2, -1, -1):
        x[i] = d_prime[i] - c_prime[i] * x[i+1]

    return x

def pricing(sigma, r, Tmax, K, N, M, E, X, t,Amax):
    delta_t = (Tmax) / E

   
    A = np.linspace(0,Amax, M+1)


    h_S = np.zeros(N+1)
    h_A = np.zeros(M+1)
    V = np.zeros(shape=(E+1, N+1, M+1))
    V_half = np.zeros((N+1, M+1))  # Matrice pour stocker V^{n+1/2}


    # Initialization of S[i] and h_S[i].

    S = np.zeros(N+1)
    h = X / (1 + ((sigma**2)/r) * (N-1))

    for i in range(1, N+1):
        if i == 1:
            S[i] = h_S[i] = h
        else:
            S[i] = h * (1 + (sigma**2)* (i-1)/r)
            h_S[i] = h * (sigma**2) / r



 
    for j in range(0, M+1):
        h_A[j] = Amax / M
   

    for i in range(1,N+1):
        for j in range(0,M):
          V[E][i][j] = max(A[j]/Tmax - K,0) # Terminal condition

    Time loop for solving with the ADI scheme.
         
    for n in range(E-1, -1, -1):
   
      #First ADI sub-step (implicitly in S)
        for j in range(0, M): #
          a = np.zeros(N-1)
          b = np.zeros(N-1)
          c = np.zeros(N-1)
          d = np.zeros(N-1)
         
          for i in range(1, N):
            hi = h_S[i]
            hi_1 = h_S[i+1]  
            a[i-1] = (delta_t*(-(sigma**2) * S[i]**2) / ((hi + hi_1) * hi) + r * S[i]*delta_t / (hi + hi_1))
            b[i-1] = (delta_t*((sigma**2) * S[i]**2) / (hi*hi_1)  + r*delta_t +1)
            c[i-1] = (delta_t*(-(sigma**2) * S[i]**2) / ((hi + hi_1) * hi_1) - r * S[i]*delta_t / (hi + hi_1))
            d[i-1] =  V[n+1][i][j]

        
          V_half[0, j]  = exp(-r * (Tmax - n*delta_t)) * max((A[j] / Tmax - K), 0) # sera toujours nul pour A<KT
          V_half[N, j]  = (X / (r * Tmax)) * (1 - exp(-r * (Tmax - n*delta_t))) + exp(-r * (Tmax - n*delta_t)) * ((A[j] / Tmax) - K)
          V_half[1:N, j] = thomas_algorithm(a, b, c, d)
         

        for i in range(1, N+1):
            a = np.zeros(M)
            b = np.zeros(M)
            c = np.zeros(M)
            d = np.zeros(M)

            for j in range(0, M):
              h_A_j1 = h_A[j]
              a[j-1] = 0
              b[j-1] = (delta_t*S[i] / h_A_j1) +1
              c[j-1] = -delta_t*S[i] / h_A_j1
              d[j-1] =V_half[i, j]
              if A[j]>=K*Tmax :
                V[n][i][j] = (1 - exp(-r * (Tmax - n*delta_t))) * (S[i] / (r * Tmax)) + (A[j]/Tmax - K)*exp(-r * (Tmax - n*delta_t))

           
            V[n, i, 0:M] = thomas_algorithm(a, b, c, d)
           


    return V

A = np.linspace(0,K*Tmax,M+1)
S = np.linspace(0,X,N+1)
X, Y = np.meshgrid(S, A)
V = pricing_test_end(sigma=0.4, r=0.06, Tmax=1, K=2, N=30,M=30, E=10, X=8 ,t=0.5,Amax=6)[5][:][:]
ax = plt.axes(projection='3d')
ax.plot_surface(X,Y, V,cmap='viridis')
# Nommer les axes
ax.set_xlabel('Prix de A')
ax.set_ylabel('Prix du sous-jacent (S)')
ax.set_zlabel('Prix de l\'option (V)')
plt.legend()

Thanks,
 

Attachments

  • Mygraph.png
    Mygraph.png
    95.6 KB · Views: 3
  • jama605943-fig-0001-m.jpg
    jama605943-fig-0001-m.jpg
    186.5 KB · Views: 3
Last edited:
Last edited:
Thank you so much for your prompt answer. While I completely agree ADE works best for that purpose, it is mandatory for me to use ADI as I'm doing this for an academic project that requires ADI...
 
Last edited:
Your code is unreadable .. I fail to see the underlying structure of the PDE and the ADI scheme.
 
I’ve attached images of the partial differential equation (PDE) that I want to solve, as well as the detailed ADI scheme. I’m also including the part of my code that implements this method.
I use TDMA for solve the tridiagonal system
Python:
for n in range(E-1, -1, -1):  
    
     
        for j in range(0, M): # C'est ok comme domaine ca
          a = np.zeros(N)
          b = np.zeros(N)
          c = np.zeros(N)
          d = np.zeros(N)
          
          for i in range(1, N+1):   # C'est ok comme domaine ca
            hi = h_S[i-1]
            hi_1 = h_S[i]   
            a[i-1] = (delta_t*(-(sigma**2) * S[i]**2) / ((hi + hi_1) * hi) + r * S[i]*delta_t / (hi + hi_1))
            b[i-1] = (delta_t*((sigma**2) * S[i]**2) / (hi*hi_1)  + r*delta_t +1)
            c[i-1] = (delta_t*(-(sigma**2) * S[i]**2) / ((hi + hi_1) * hi_1) - r * S[i]*delta_t / (hi + hi_1))
            d[i-1] =  V[n+1][i][j]
          

          V_half[0, j]  = exp(-r * (Tmax - n*delta_t)) * max((A[j] / Tmax - K), 0) # sera toujours nul pour A<KT
          V_half[N, j]  = (X / (r * Tmax)) * (1 - exp(-r * (Tmax - n*delta_t))) + exp(-r * (Tmax - n*delta_t)) * ((A[j] / Tmax) - K) 
          V_half[0:N, j] = thomas_algorithm(a, b, c, d)
          
        for i in range(1, N+1):
            a = np.zeros(M)
            b = np.zeros(M)
            c = np.zeros(M)
            d = np.zeros(M)
            for j in range(0, M):
              h_A_j1 = h_A[j]
              a[j] = 0
              b[j] = (delta_t*S[i] / h_A_j1) +1
              c[j] = -delta_t*S[i] / h_A_j1
              d[j] =V_half[i, j]
              if A[j]>=K*Tmax :
                V[n][i][j] = (1 - exp(-r * (Tmax - n*delta_t))) * (S[i] / (r * Tmax)) + (A[j]/Tmax - K)*exp(-r * (Tmax - n*delta_t))
      
            
            V[n, i, 0:M] = thomas_algorithm(a, b, c, d)
Capture d’écran 2024-08-24 à 19.52.37.png

Capture d’écran 2024-08-24 à 19.53.15.png
 
Hmm, still very incomplete, unfortunately.
eg.do you have an A_max??

If this is an academic project as you mention, then I assume you write up the maths first?

 
Last edited:
Here is my ADI stuff from a while back (all quants had problems...lots of horror stories because they don't know wave equation)
My ADE post was to show how to document.. All I get is a graph.
 

Attachments

  • adi1.jpg
    adi1.jpg
    387.3 KB · Views: 6
  • adi2.jpg
    adi2.jpg
    83.7 KB · Views: 5
Last edited:
Back
Top