Reply to thread

An Explicit Implied Volatility Formula

International Journal of Theoretical and Applied Finance, Vol. 20, no. 7, 2017



Dan Stefanica

Baruch College, City University of New York


Rados Radoicic

CUNY Baruch College



[CODE=cpp]// DS_RR.cpp

//

/* An Explicit Implied Volatility Formula

International Journal of Theoreticaland Applied Finance, Vol. 20, no. 7, 2017



Dan Stefanica

Baruch College, City University of New York


Rados Radoicic

CUNY Baruch College


Date Written : January 30, 2017

*/

//

// https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2908494

//

// Programmed in C++ by Daniel J.Duffy 2023

// Datasim Education BV 2023

//




#include <cmath>

#include <iostream>


using value_type = double;


// Call parameters

/*

const value_type S = 2080;

const value_type K = 3050;

const value_type r = 0.02;

const value_type b = 0;

const value_type sig = 0.1097904;

const value_type T = 0.5;


*/


const value_type S = 100;

const value_type K = 15000;

const value_type r = 0.08;

const value_type b = r;

const value_type sig = 0.0004;

const value_type T = 1000.0;



// ATM + small vol OK

// OTM, ITM + small vol not OK

// r == vol == 0 is essentially a degenerate case??

/*

const value_type S = 60;

const value_type K = 65;

const value_type r = 0.08;

const value_type b = r;

const value_type sig = 0.302; // small vol has issues < 0.1 !!

const value_type T = 0.25;

*/


/*

const value_type S = 100;

const value_type K = 6.30957;

const value_type r = 0.0;

const value_type b = r;

const value_type sig = 0.3409436;

const value_type T = 1.0;

*/

// Polya's 1949 approximation to N(x)

value_type G(value_type x)

{

    return 1 / (exp(-358 * x / 23 + 111 * atan(37 * x / 294) + 1));

    value_type y = std::sqrt(1.0 - std::exp(-2.0 * x * x / 3.141592653589793));

    if (x >= 0.0)

        return 0.5 * (1.0 + y);

    else

        return 0.5 * (1.0 - y);

}


value_type N(value_type x)

{ // The approximation to the cumulative normal distribution


    //return cndN(x);

    return G(x);

}


value_type OptionPrice(value_type x)

{ // Call price, x == sig


    value_type tmp = x * std::sqrt(T);


    value_type d1 = (std::log(S / K) + (r + (x * x) * 0.5) * T) / tmp;

    value_type d2 = d1 - tmp;

    return (S * std::exp((b - r) * T) * N(d1)) - (K * std::exp(-r * T) * N(d2));

}


value_type Cm = OptionPrice(sig); // Market price

// Stefanica and Radoicic volatiliy estimator

value_type y = std::log(S / K);

value_type alpha = Cm / (K * std::exp(-r * T));

value_type R = 2 * alpha - std::exp(y) + 1.0;


value_type pi = 3.141592653589793;

value_type t1 = std::exp((1.0 - 2 / pi) * y);

value_type t2 = std::exp((-1.0 + 2 / pi) * y);

value_type A = std::pow(t1 - t2, 2);

value_type B1 = 4.0 * (std::exp(-y) + std::exp(-2 * y / pi));

value_type B2 = -2.0 * (std::exp(-y) * (t1 + t2) * (std::exp(2 * y) + 1.0 - R * R));

value_type B = B1 + B2;

value_type C = std::exp(-2.0 * y)* (R * R - std::pow(std::exp(y) + 1.0, 2) - R * R);


value_type beta = 2.0 * C / (B + std::sqrt(B * B + 4.0 * A*C));

value_type gamma = -0.5 * pi * std::log(beta);


value_type compute()

{

    if (y >= 0.0)

    {

        value_type C0 = K * std::exp(-r * T) * (std::exp(y) * A * (std::sqrt(2 * y) - 0.5));

        value_type sig;

        if (Cm <= C0)

        {

            sig = (std::sqrt(gamma + y) - std::sqrt(gamma - y)) / std::sqrt(T);

        }

        else

        {

            sig = (std::sqrt(gamma + y) + std::sqrt(gamma - y)) / std::sqrt(T);

        }

    }

    else

    {

        value_type C0 = K * std::exp(-r * T) * (std::exp(y)/2 - A * (std::sqrt(2 * y) - 0.5));

        value_type sig;

        if (Cm <= C0)

        {

            sig = (-std::sqrt(gamma + y) + std::sqrt(gamma - y)) / std::sqrt(T);

        }

        else

        {

            sig = (std::sqrt(gamma + y) - std::sqrt(gamma - y)) / std::sqrt(T);

        }

    }


    return sig;


}



int main()

{


    std::cout << "DS/RR: " << compute() << '\n';

}[/CODE]


Back
Top Bottom