Another way to see why their inequality implies an inherent contradiction comes from measure theory.
Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space.
The relevant (intuitive) lemma is, for any \(\mathcal{G}\subset\mathcal{F}\), and a \(\mathcal{G}\)-measurable function \(X\):
\[ \int_{A\in \mathcal{G}} \mathbb{E}\left[ X |\mathcal{G} \right] \ d\mathbb{P}(\omega)= \int_{A\in\mathcal{G}} X(\omega) \ d\mathbb{P}(\omega) \]
Another way of saying this is,
\(\mathbb{E}[X|A]\cdot\mathbb{P}[A] = \mathbb{E}\left[X1_{A} \right]\)
Consider the random variable \(Z(\omega) = X(\omega)-Y(\omega) \)
Suppose, for the sake of contradiction, that there is a non-empty set
\(\begin{align}A &:=\{\omega:Z(\omega) > 0 \} \\ &\Longleftrightarrow\int_{A} X(\omega)-Y(\omega) \ d\mathbb{P}(\omega) >0 \\ &\Longleftrightarrow \int_A \mathbb{E}[Y|\sigma(X)]\ d \mathbb{P}(\omega) > \int_A Y(\omega) \ d \mathbb{P}(\omega)\end{align}\)
Where the first term in the final inequality is another way of expressing the problem statement. Now, since \(Z\) was measurable on \(\mathcal{A}\), so must \(X\) (and \(Y\)) be, therefore \(A\subset \sigma(X)\) presenting a contradiction. The same argument holds for \(B:=\{\omega:Z(\omega)<0\}\).
Hence \(X\) and \(Y\) are indistinguishable wherever they have non-trivial measure (i.e., almost surely).
Hope this helps.