• C++ Programming for Financial Engineering
    Highly recommended by thousands of MFE students. Covers essential C++ topics with applications to financial engineering. Learn more Join!
    Python for Finance with Intro to Data Science
    Gain practical understanding of Python to read, understand, and write professional Python code for your first day on the job. Learn more Join!
    An Intuition-Based Options Primer for FE
    Ideal for entry level positions interviews and graduate studies, specializing in options trading arbitrage and options valuation models. Learn more Join!

Stochastic Calculus :Conditional Expectation

  • Thread starter Thread starter WMD
  • Start date Start date

WMD

Joined
2/25/23
Messages
12
Points
3
Suppose [imath]X_1,X_2 \dots[/imath]are independent random variables with [imath]\mathbb{P}[X_j= 1] =1- \mathbb{P}[X_j=-1]=\frac13[/imath]

Let [imath]S_n = X_1 + \dots + X_n[/imath]


1. Find [imath] \mathbb{E}[S_n], \mathbb{E}[S^2_n] , \mathbb{E}[S^3_n][/imath]. Answers to 1 are given in #2.
2.Find If m < n [imath] E[S_n| \mathcal{F}_m], E[S^2_n| \mathcal{F}_m], E[S^3_n| \mathcal{F}_m][/imath]

3. Find If m < n [imath] E[ X_m | \mathcal{F}_n] [/imath]

My answers to 2.
1678084006738.png

[math]E[(S_n -S_m)^2|\mathcal{F}_m] = \mathbb{E}[(S_n -S_m)^2] = E[X^2_j](n-m) =1(n-m)[/math]
and hence,
[math]E[S^2_n|\mathcal{F}_m] = S^2_m -\frac23 {S_m} + (n-m)[/math]

1678084390575.png

1678085930597.png
 
Last edited:
These are the correct answers.

[math]\mathbb{E}[S_n]=-\frac{n}{3}, \mathbb{E}[S^2_n]=n + \frac{n(n-1)}{9}, \mathbb{E}[S^3_n]= -\frac{n}{3} -n(n-1) - \frac{n(n-1)(n-2)}{27}[/math]
 
Last edited:
Back
Top