- Joined
- 2/25/23
- Messages
- 12
- Points
- 3
Conditional Expectation:
Suppose we roll two dice, a red and a green one, and let X be the value on the red die and Y the value on the green die. Let Z = X/Y
Find E[ (X+2Y) | Z ]
My answer:
[math]E[ZY| ] =\displaystyle\sum_{Y=1}^6\displaystyle\sum_{X=1}^6 \frac{X}{Y}\cdot{Y}\cdot \frac{1}{36}= \frac72[/math]
[math]E[Z] =\displaystyle\sum_{Y=1}^6\displaystyle\sum_{X=1}^6 \frac{X}{Y}\cdot \frac{1}{36} = 1.4291667 \therefore E[Y|Z] =\frac{E[ZY]}{E[Z]} = \frac{\frac72}{1.4291667}=2.448979 \therefore E[(X+ 2Y)|Z] = (Z + 2) \cdot 2.448979[/math]
Is the above answer correct?
Suppose we roll two dice, a red and a green one, and let X be the value on the red die and Y the value on the green die. Let Z = X/Y
Find E[ (X+2Y) | Z ]
My answer:
[math]E[ZY| ] =\displaystyle\sum_{Y=1}^6\displaystyle\sum_{X=1}^6 \frac{X}{Y}\cdot{Y}\cdot \frac{1}{36}= \frac72[/math]
[math]E[Z] =\displaystyle\sum_{Y=1}^6\displaystyle\sum_{X=1}^6 \frac{X}{Y}\cdot \frac{1}{36} = 1.4291667 \therefore E[Y|Z] =\frac{E[ZY]}{E[Z]} = \frac{\frac72}{1.4291667}=2.448979 \therefore E[(X+ 2Y)|Z] = (Z + 2) \cdot 2.448979[/math]
Is the above answer correct?
Last edited: