peterruse, you are right but I think that your solution will be more understandable if you simply use the definition of the uniform random variable instead of introducing sample space.
The joint probability density function of X1, X2, ... ,Xn will be fX1 X2 .. Xn(x1,.. , xn) = fX1(x1)^n = \(\frac{1}{(1-h)^n}\) since each marginal density function fXi = \(\frac{1}{1-h}\) if 0<xi< 1-h and 0 otherwise. Thus, the probability will be
\(n!\int_0^{1-nh}\int_{x_1+h}^{1-(n-1)h}\cdots\int_{x_{n-1}+h}^{1-h}\frac{1}{(1-h)^n}dx_ndx_{n-1}\cdots dx_1 = \frac{n!}{(1-h)^n} \int_0^{1-nh}\int_{x_1+h}^{1-(n-1)h}\cdots\int_{x_{n-1}+h}^{1-h}1dx_ndx_{n-1}\cdots dx_1\) = \(\frac{(1-nh)^n}{(1-h)^n}\)