To finish what we started: Given \(0<p<1\), from
@zlatancrew we have
\(f(z)=f(pz+q)f(qz+p)\qquad(1)\).
Assume that \(E[X+Y]=f'(1)<\infty\).
@zlatancrew pointed out that we have already proved it for \(p=\frac12\).
Let \(\lambda=f'(1)\).
As
@Hi Rez suggested:
Claim 1. \(f^{( n )}(1)=\lambda^n\) for all \(n\).
Proof. Take \(n\ge1\). Then using the General Leibniz Rule on (1) gives
\(f^{( n + 1 )}(z)=\sum_{k=0}^{n + 1}{n+1\choose k}p^k f^{(k)}\bigl(pz+(1-p)\bigr)(1-p)^{n+1-k}f^{(n+1 - k)}\bigl((1-p)z+p\bigr).\)
Plugging in 1 and applying induction:
\(f^{(n + 1)}(1)=p^{n + 1}f^{(n + 1)}(1)+\sum_{k=1}^n {n+1\choose k}p^k (1-p)^{n+1-k}\lambda^{n + 1}+(1-p)^{n+1}f^{(n + 1)}(1)\\
=(p^{n+1}+(1-p)^{n+1})f^{(n+1)}+\lambda^{n+1}(1-p^{n+1}-(1-p)^{n+1}) \),
proving that \(f^{(n+1)}(1)=\lambda^{n+1}.\) QED
Claim 2. \(f\) is entire.
Proof. Write \(f(z)=a_0+a_1 z + a_2 z^2+...\). Then using Stirling's formula/inequality which implies \(n!\ge\bigl(\frac n e\bigr)^n\),
\(a_n=\frac{f^{( n )}(0)}{n!}\le \frac{\lambda^n}{n!}\le \bigl(\frac{\lambda e}n\bigr)^n\).
Hence \(\lim_{n\to\infty}a_n^{\frac1n}=0\), proving that \(f\) has an infinite radius of convergence by the root test. QED
From my last post, it follows from these claims that \(f(z)=e^{\lambda(z-1)}\) proving that \(X+Y\) is Poisson distributed.
For a full solution we still need to show that \(E[X]<\infty\) for \(p\ne\frac12\). Any ideas?